

Office of Science

STAR Data Production at NERSC/Cori An adaptable Docker container approach for HPC

Mustafa Mustafa, Jefferson Porter, Jan Balewski

Lawrence Berkeley National Lab

Jérôme Lauret

Brookhaven National Lab

Heavy Flavor Tracker

improved resolution

→ Quark Gluon Plasma is the expected state of nuclear matter under extreme temperature and pressure. It is the state of all the matter in the universe a few microseconds after the big bang before it proceeds to be confined in protons and neutrons as we know it now.

- → Measurements of D mesons flow help us understand the degree of thermalization of the Quark Gluon Plasma and to constrain its transport parameters.
- → Heavy Flavor Tracker with State of the art MAPS Pixel sensors technology, allows for ~20µm resolution on secondary decay vertices
- → Installed at STAR in year 2014 and collected 3B Au+Au events

+4 orders of magnitude reduction in combinatorial background

→ For the first time we can study charm hadron chemistry in heavy-ion collisions (D⁰/D⁺⁻, D_s, Λ_s)

Scalable Access to Database

STAR data production software uses a MySQL service for detector online running parameters and calibrations. The location of this DB is critical for scaling the number of jobs to the throughput planned at Cori.

For a large scale production STAR can place the DB as:

- 1) A network isolated DB service
- 2) A snapshot local DB server at the computing node
- 3) Full payload local DB server at the computing node Each approach comes with its own advantages. The location of the DB is an important part of the end-to-end workflow optimization.

Network isolated DB service:

Unpredictable network conditions → Not easy to scale to projected throughput.

An example of a bad incident: 45% of walltime spent in DB

~45% of production time in DB

number of jobs Cons:

- Have to start the server from scratch for every job → Some tables take a long time to cache (a particular table makes ~30k queries) → solved with
- perCacheNode feature of shifter (XFS file) Time taken to copy payload at the beginning of the job
- Consumes cpu allocation

NY-CA Data Transfer over ESnet

• For best utilization of CPU resources we need a reliable data transfer between BNL and NERSC → 100TB / 10k CPUs / week \rightarrow ~200 MB/s

- ESnet + optimized end points and transfer protocol provides 600 MB/s transfer rate, a 5x improvement over the vanilla system rate of ~120 MB/s
- Large scale test is on way to ensure reliability of the connection at this rate

Motivation & Idea

Challenge: the increasing sizes of data collected by HEP/NP experiments lead to an increasing demand on computing capacity that is challenging to meet by scaling the conventional clusters solution.

Cori, second generation exa-scale facility at NERSC

Idea: Linux containers enabled HPC systems can

provide the right virtual environment for experiments to

In this poster: we report on the first test of STAR real-

data production utilizing Docker/Shifter containers on

their customized software stack, ensuring

Opportunity: new generation HPC facilities provide vast computing resources with adequate memory and network connectivity intensive application. These facilities allow for on-demand of HEP/NP data production expansion capacity that significantly shorten the time needed to get physics ready data and thus accelerate the pace of scientific discovery.

Production Pipeline

Pipeline design objectives:

- Modularity to enable end-to-end optimization
- Need to be ready for all Cori downtime scenarios

reproducibility and high walltime efficiency.

Cori Phase I supercomputer at NERSC.

- → Jobs cold start capability
- → daemons failure tolerance
- Continuous monitoring
- To handle a target throughput ~10k cores / week → ~100TB / week transferred over ESnet
- Archive input and output files to HPSS

Design and implementation:

- Automated finite state workflow → allows us to achieve high overall fidelity
- One input raw data file is mapped to multiple process at the node (a simple mapreduce pattern)
- Multi-threaded design (12 daemon threads). All daemons are configurable using json files
- Central production DB (MongoDb)
- → communicate/control system states
- → Provides persistent storage of pipeline states (all daemons are stateless)
- Slurm for job submission. Jobs resources utilization also gathered from slurm and log files to allow monitoring and
- further tunning (no heartbeat from jobs)
- Continuous online pipeline monitoring
- → Python Flask app running on portal-auth.ners.gov responds to web-base users queries to MongoDB
- JavaScript runs in browser end renders numbers into either tables or graphs

Docker/Shifter

- HPC systems provide vast resources for computation and data intensive applications. However, for technical and logistic reasons, their software is not readily customizable for specific project needs.
- With a Docker enabled system we can push STAR software/environment with the job to the computing
- Shifter [1] is a NERSC project to bring docker-like virtualization functionality on cray compute nodes to allow custom software stack deployment.

See "Using Shifter to Bring Containerized CVMFS to HPC", Lisa Gerhardt, Wed., 12 Oct 2016, 12:30, id: 293.

[1] D. M. Jacobsen and R. S. Canon, "Contain This, Unleashing Docker for HPC", Cray User Group

Performance

We carried a real job production test that used ~100k CPU hours to test the different units integration and calculate the overall success rate:

J = Successful job completion

O = Good output file with +98% of events produced

Success Rate (SR) = J * O

Generally, an SR > 95% is enough to qualify the workflow and computing facility to be real data production quality.

- 16 production processes + 1 MySQL server per 16 CPU cores → +99% walltime efficiency
- 50s / Au+Au event is comparable to 48s without a local MySQL CPU overhead

- < 4% failure → SR > 96%
- A solution has been identified to increase the SR to the +99% range
- Trivial DB scalability with a local MySQL server per job

Summary & Outlook

- Docker/Shifter + HPC can carry HEP/NP data production at a large scale
- Shifter enabled Cori and Edison at NERSC offer such an opportunity
- Network bandwidth optimization is essential for end-toend optimization: ESnet enables transfer of large amounts of data across the continent
- +99% walltime efficiency demonstrated

Production plan:

- STAR collected a 3Pb of Au+Au collision data during RHIC run 2016 \rightarrow +50M CPU hours
- We requested to process 50% of the data at Cori
- → Transfer 1.5Pb into Cori, ~1Pb output data → ESnet
- → Use 25M CPU hours
- → Full integration test with NY-CA transfer pipe